Reconstruct motion path features

This example shows a couple of different scenarios involving the reconstruction of motion path features to geological times.

Exported reconstructed motion paths to a file

In this example we reconstruct motion path features and export the results to a Shapefile.

Sample code

import pygplates


# Load one or more rotation files into a rotation model.
rotation_model = pygplates.RotationModel('rotations.rot')

# Create a reconstruct model from some motion path features and the rotation model.
reconstruct_model = pygplates.ReconstructModel('motion_path_features.gpml', rotation_model)

# Reconstruct features to this geological time.
reconstruction_time = 50

# The filename of the exported reconstructed motion paths.
# It's a shapefile called 'motion_path_output_50Ma.shp'.
export_filename = 'motion_path_output_{0}Ma.shp'.format(reconstruction_time)

# Reconstruct the motion paths to the reconstruction time and export them to a shapefile.
reconstruct_snapshot = reconstruct_model.reconstruct_snapshot(reconstruction_time)
reconstruct_snapshot.export_reconstructed_geometries(export_filename,
    reconstruct_type=pygplates.ReconstructType.motion_path)

Details

The rotations are loaded from a rotation file into a pygplates.RotationModel.

rotation_model = pygplates.RotationModel('rotations.rot')

Create a reconstruct model from the motion path features and the rotation model.

reconstruct_model = pygplates.ReconstructModel('motion_path_features.gpml', rotation_model)

The motion path features will be reconstructed to their 50Ma positions.

reconstruction_time = 50
All motion path features are reconstructed to 50Ma.
We specify we only want to reconstruct motion path features by specifying pygplates.ReconstructType.motion_path for the reconstruct_type argument.
reconstruct_snapshot = reconstruct_model.reconstruct_snapshot(reconstruction_time)
reconstruct_snapshot.export_reconstructed_geometries(export_filename,
    reconstruct_type=pygplates.ReconstructType.motion_path)

Output

We should now have a file called motion_path_output_50Ma.shp containing the motion paths reconstructed to their 50Ma positions.

Query a reconstructed motion path

In this example we print out the point locations in a reconstructed motion path.

Sample code

import pygplates


# Specify two (lat/lon) seed points on the present-day African coastline.
seed_points = pygplates.MultiPointOnSphere(
    [
        (-19, 12.5),
        (-28, 15.7)
    ])

# A list of times to sample the motion path - from 0 to 90Ma in 1My intervals.
times = range(0, 91, 1)

# Create a motion path feature.
motion_path_feature = pygplates.Feature.create_motion_path(
        seed_points,
        times,
        valid_time=(max(times), min(times)),
        relative_plate=201,
        reconstruction_plate_id=701)

# Load one or more rotation files into a rotation model.
rotation_model = pygplates.RotationModel('rotations.rot')

# Create a reconstruct model from the motion path feature and the rotation model.
reconstruct_model = pygplates.ReconstructModel(motion_path_feature, rotation_model)

# Reconstruct features to this geological time.
reconstruction_time = 50

# Reconstruct the motion path feature to the reconstruction time.
reconstruct_snapshot = reconstruct_model.reconstruct_snapshot(reconstruction_time)
reconstructed_motion_paths = reconstruct_snapshot.get_reconstructed_geometries(
    reconstruct_types=pygplates.ReconstructType.motion_path)

# Iterate over all reconstructed motion paths.
# There will be two (one for each seed point).
for reconstructed_motion_path in reconstructed_motion_paths:

    # Print the motion path plate IDs.
    print 'Motion path: %d relative to %d at %fMa' % (
        reconstructed_motion_path.get_feature().get_reconstruction_plate_id(),
        reconstructed_motion_path.get_feature().get_relative_plate(),
        reconstruction_time)

    # Print the reconstructed seed point location.
    print '  reconstructed seed point: lat: %f, lon: %f' % reconstructed_motion_path.get_reconstructed_seed_point().to_lat_lon()

    motion_path_times = reconstructed_motion_path.get_feature().get_times()

    # Iterate over the points in the motion path.
    for point_index, point in enumerate(reconstructed_motion_path.get_motion_path()):

        lat, lon = point.to_lat_lon()

        # The first point in the path is the oldest and the last point is the youngest.
        # So we need to start at the last time and work our way backwards.
        time = motion_path_times[-1-point_index]

        # Print the point location and the time associated with it.
        print '  time: %f, lat: %f, lon: %f' % (time, lat, lon)

Details

The first part of this example comes from Create a motion path feature.
It creates a motion path feature specifying the seed point locations that each motion path emanates from as well as a list of times to plot points in the path.
seed_points = pygplates.MultiPointOnSphere([(-19, 12.5), (-28, 15.7)])
times = range(0, 91, 1)
motion_path_feature = pygplates.Feature.create_motion_path(
        seed_points,
        times,
        valid_time=(max(times), min(times)),
        relative_plate=201,
        reconstruction_plate_id=701)

The rotations are loaded from a rotation file into a pygplates.RotationModel.

rotation_model = pygplates.RotationModel('rotations.rot')

Create a reconstruct model from the motion path feature and the rotation model.

reconstruct_model = pygplates.ReconstructModel(motion_path_feature, rotation_model)

The motion path feature will be reconstructed to its 50Ma position.

reconstruction_time = 50
The motion path feature is reconstructed to 50Ma.
We also specify we only want to reconstruct motion path features by specifying pygplates.ReconstructType.motion_path for the reconstruct_types argument.
reconstruct_snapshot = reconstruct_model.reconstruct_snapshot(reconstruction_time)
reconstructed_motion_paths = reconstruct_snapshot.get_reconstructed_geometries(
    reconstruct_types=pygplates.ReconstructType.motion_path)
We iterate over the points in the reconstructed motion path and print each point location and its associated time.
The first point in the path is the oldest and the last point is the youngest. So we need to start at the last (oldest) time and work our way backwards. The last sample is at index -1 and point_index starts at zero. So our time indices are -1, -2, etc, which means last sample, then second last sample, etc.
for point_index, point in enumerate(reconstructed_motion_path.get_motion_path()):
    lat, lon = point.to_lat_lon()
    time = motion_path_times[-1-point_index]
    print '  time: %f, lat: %f, lon: %f' % (time, lat, lon)

Output

Our time range is 90Ma to 0Ma, but since the reconstruction time is 50Ma the output is only from 90Ma to 50Ma.

Motion path: 701 relative to 201 at 50.000000Ma
  reconstructed seed point: lat: -26.580350, lon: 5.008040
  time: 90.000000, lat: -31.198775, lon: -13.837430
  time: 89.000000, lat: -30.982356, lon: -13.166848
  time: 88.000000, lat: -30.759877, lon: -12.500510
  time: 87.000000, lat: -30.531408, lon: -11.838481
  time: 86.000000, lat: -30.297018, lon: -11.180823
  time: 85.000000, lat: -30.056777, lon: -10.527593
  time: 84.000000, lat: -29.810756, lon: -9.878842
  time: 83.000000, lat: -29.621610, lon: -9.269242
  time: 82.000000, lat: -29.491452, lon: -8.696601
  time: 81.000000, lat: -29.358411, lon: -8.125578
  time: 80.000000, lat: -29.222508, lon: -7.556197
  time: 79.000000, lat: -29.083766, lon: -6.988478
  time: 78.000000, lat: -28.942205, lon: -6.422443
  time: 77.000000, lat: -28.797848, lon: -5.858112
  time: 76.000000, lat: -28.650717, lon: -5.295502
  time: 75.000000, lat: -28.500836, lon: -4.734632
  time: 74.000000, lat: -28.348227, lon: -4.175519
  time: 73.000000, lat: -28.192913, lon: -3.618178
  time: 72.000000, lat: -28.034918, lon: -3.062625
  time: 71.000000, lat: -27.874264, lon: -2.508873
  time: 70.000000, lat: -27.710976, lon: -1.956935
  time: 69.000000, lat: -27.545078, lon: -1.406823
  time: 68.000000, lat: -27.376593, lon: -0.858549
  time: 67.000000, lat: -27.293542, lon: -0.487339
  time: 66.000000, lat: -27.247592, lon: -0.191647
  time: 65.000000, lat: -27.201374, lon: 0.103869
  time: 64.000000, lat: -27.154887, lon: 0.399209
  time: 63.000000, lat: -27.108135, lon: 0.694373
  time: 62.000000, lat: -27.061118, lon: 0.989360
  time: 61.000000, lat: -27.013838, lon: 1.284170
  time: 60.000000, lat: -26.966296, lon: 1.578802
  time: 59.000000, lat: -26.918493, lon: 1.873257
  time: 58.000000, lat: -26.870432, lon: 2.167534
  time: 57.000000, lat: -26.822113, lon: 2.461632
  time: 56.000000, lat: -26.773537, lon: 2.755552
  time: 55.000000, lat: -26.740310, lon: 3.124328
  time: 54.000000, lat: -26.708646, lon: 3.501316
  time: 53.000000, lat: -26.676816, lon: 3.878182
  time: 52.000000, lat: -26.644823, lon: 4.254924
  time: 51.000000, lat: -26.612667, lon: 4.631544
  time: 50.000000, lat: -26.580350, lon: 5.008040
Motion path: 701 relative to 201 at 50.000000Ma
  reconstructed seed point: lat: -35.733432, lon: 7.829851
  time: 90.000000, lat: -40.633500, lon: -12.902754
  time: 89.000000, lat: -40.408039, lon: -12.104422
  time: 88.000000, lat: -40.175428, lon: -11.312349
  time: 87.000000, lat: -39.935768, lon: -10.526635
  time: 86.000000, lat: -39.689160, lon: -9.747372
  time: 85.000000, lat: -39.435708, lon: -8.974643
  time: 84.000000, lat: -39.175516, lon: -8.208522
  time: 83.000000, lat: -38.974541, lon: -7.507706
  time: 82.000000, lat: -38.835379, lon: -6.868988
  time: 81.000000, lat: -38.693052, lon: -6.232683
  time: 80.000000, lat: -38.547588, lon: -5.598821
  time: 79.000000, lat: -38.399018, lon: -4.967434
  time: 78.000000, lat: -38.247371, lon: -4.338547
  time: 77.000000, lat: -38.092678, lon: -3.712189
  time: 76.000000, lat: -37.934970, lon: -3.088383
  time: 75.000000, lat: -37.774279, lon: -2.467151
  time: 74.000000, lat: -37.610634, lon: -1.848516
  time: 73.000000, lat: -37.444068, lon: -1.232496
  time: 72.000000, lat: -37.274612, lon: -0.619110
  time: 71.000000, lat: -37.102299, lon: -0.008373
  time: 70.000000, lat: -36.927159, lon: 0.599701
  time: 69.000000, lat: -36.749226, lon: 1.205097
  time: 68.000000, lat: -36.568530, lon: 1.807804
  time: 67.000000, lat: -36.480099, lon: 2.202243
  time: 66.000000, lat: -36.431745, lon: 2.507959
  time: 65.000000, lat: -36.383124, lon: 2.813418
  time: 64.000000, lat: -36.334239, lon: 3.118621
  time: 63.000000, lat: -36.285091, lon: 3.423567
  time: 62.000000, lat: -36.235682, lon: 3.728255
  time: 61.000000, lat: -36.186013, lon: 4.032685
  time: 60.000000, lat: -36.136086, lon: 4.336857
  time: 59.000000, lat: -36.085903, lon: 4.640771
  time: 58.000000, lat: -36.035465, lon: 4.944425
  time: 57.000000, lat: -35.984774, lon: 5.247820
  time: 56.000000, lat: -35.933832, lon: 5.550955
  time: 55.000000, lat: -35.899285, lon: 5.924664
  time: 54.000000, lat: -35.866424, lon: 6.306060
  time: 53.000000, lat: -35.833407, lon: 6.687278
  time: 52.000000, lat: -35.800235, lon: 7.068315
  time: 51.000000, lat: -35.766909, lon: 7.449173
  time: 50.000000, lat: -35.733432, lon: 7.829851

Note

The reconstructed seed point is the same position as the last point in a motion path.